
Collision Prediction Among Polygons
with Arbitrary Shape and Unknown Motion

Yanyan Lu, Zhonghua Xi and Jyh-Ming Lien

Abstract— Collision prediction is a fundamental operation for
planning motion in dynamic environment. Existing methods
usually exploit complex behavior models or use dynamic
constraints in collision prediction. However, these methods all
assume simple geometries, such as disc, which significantly
limit their applicability. This paper proposes a new approach
that advances collision prediction beyond disc robots and
handles arbitrary polygons. Our new tool predicts collision
by assuming that obstacles are adversarial. Comparing to an
online motion planner that replans periodically at fixed time
interval and planner that approximates obstacle with discs,
our experimental results provide strong evidences that the
new method significantly reduces the number of replans while
maintaining higher success rate of finding a valid path. Our
geometric-based collision prediction method provides a tool to
handle highly complex shapes and provides a complimentary
approach to those methods that consider behavior and dynamic
constraints of objects with simple shapes.

I. INTRODUCTION

Imagine a scenario where a robot navigates itself through
a disaster zone filled with static obstacles, mobile robots
carrying debris with various sizes and shapes and mobile
manipulators picking up and loading debris on top of the
mobile robots or conveyor belts. In this scenario, the robot
must plan its path without knowing how the other robots will
move, and, in practice, it is inefficient to consider the motion
of other robots before planning its own movement. Similarly,
a robot requires the same ability to navigate through a
factory, warehouse or airport among other mobile robots
manipulating and carrying commercial goods with various
sizes and shapes. Fig. 1 illustrates two of such examples
where a mobile robot, which is modeled either as a point
or a polygon, navigates through environments filled with
static and dynamic obstacles with arbitrary shapes. In motion
planning literature, this problem is usually known as online
motion planning or sensor-based motion planning.

Online motion planning methods usually exploit the idea of
temporal coherence to gain better efficiency by repairing
the invalid portion of the path or (tree-based or graph-
based) roadmaps [1], [2], [3], [4] since the changes in the
configuration space is usually small from frame to frame.
These planning strategies are often known as replanning
methods [5], [6], [7], [8], [9]. Although these replanning
methods are efficient, almost all existing frameworks update
the environmental map and then replan periodically at fixed
time interval. That is, even if there are no changes in the

All authors are with the Department of Computer Science, George
Mason University, USA, 22030. This work is supported in part by NSF
IIS-096053, EFRI-1240459, CNS-1205260, FHWA DTFH61-10-R-00036,
AFOSR FA9550-12-1-0238 and USGS.

Start

GoalCurrent

(a) Point robot

Start

Goal

Current

(b) Polygonal robot

Fig. 1. Two examples of a mobile robot moving from the upper-left
corner to the lower-right corner through environments filled with static
(black) and dynamic (grey) obstacles whose motion is unknown to the robot.
Bounding these moving obstacles with circles can lead to poor collision
prediction and result in many unnecessary replanning. Our method predicts
the collision time for obstacles with arbitrary shapes. The obstacles shown in
red are the ones with the earliest collision times with respect to the current
configurations of the robot (also shown in red).

configuration space, motion planner will still be invoked to
replan. The situation is even worse when replanning is not
done frequently enough: Paths that are believed to be valid
may become unsafe.

Motivated by this issue, several strategies [10], [11], [12],
[13], [8], [14], [15] have been proposed to replan adaptively
only at the critical moments when the robot and obstacles
may collide. These critical moments are usually detected
by collision prediction methods. The main challenge in pre-
dicting collision steams from the assumption that obstacle’s
motion is unknown. Existing methods in collision prediction
exploit complex behavior prediction [14], [15] or consider
dynamic constraints [10], [11], [13], [16]. However, these
methods all assume either translational or disc objects, which
significantly limit their applicability. This is particularly true
in cluttered environments, such as those in the aforemen-
tioned applications and the examples in Fig. 1, where moving
obstacles can have arbitrary shapes and sizes. As we will
show later, bounding these moving obstacles with discs can
lead to arbitrarily poor collision estimation.

In this paper, we propose a new geometric tool that advances
collision prediction beyond the translational and disc objects
and can handle arbitrary polygons. The basic framework
introduced in this paper models the obstacles as adversarial
agents that will minimize the time that the robot remains
collision free. As a result, a robot can actively determine its
next replanning time by conservatively estimating the amount
of time (i.e., earliest collision time) that it can stay on the
planned path without colliding with the obstacles. The idea

of earliest collision time and conservative advancement are
detailed in Sections III to VI. This prediction is determined
only based on the last known positions of the obstacles
and their maximum linear and angular velocities. In our
experimental results (in Section VIII), we demonstrate that
an online planner using the proposed collision prediction
method significantly reduces the number of replannings
while maintaining the same or higher success rate of finding
a valid path than (1) planner that replans periodically at fixed
time intervals and (2) planner that bounds obstacles with cir-
cles. In essence, our main contribution is a geometric-based
collision prediction method that can handle highly complex
shapes. This tool provides a complimentary approach to the
methods that consider complex behavior prediction or handle
dynamic constraints but with only simple shapes.

II. RELATED WORK

Motion planning problems involving dynamic environments
can be roughly classified into two categories: (1) The trajec-
tory of every moving obstacle is fully known in advance,
and (2) the trajectory of a moving obstacle is partially
or completely unpredictable. Since our work falls into the
second category, we will focus on reviewing recent works
considering unknown environments.

Collision Avoidance. Due to little knowledge of the en-
vironment, safety becomes very important and challenging
in path planning in unknown environments [17], [18], [12],
[19], [20], [21], [22], [23], [24], [25]. Fraichard and Asama
[21] provided the formal definitions of two new concepts:
inevitable collision state (ICS) and inevitable collision ob-
stacle (ICO). If the robot is in an ICS, no matter what its
future trajectory is, a collision eventually occurs with an
obstacle in the environment. ICO is a set of ICS yielding
a collision with a particular obstacle. Shiller et al. [19]
proposed a motion planner based on Velocity Obstacles (VO)
for static or dynamic environments. The time horizon for a
velocity obstacle is computed based on the current positions
of robot and the obstacle as well as control constraints.
With this adaptive time horizon strategy, the velocity obstacle
tightly approximates the set of ICS. Gomez and Fraichard
[22] proposed another ICS-based collision avoidance strategy
called ICS-AVOID. ICS-AVOID aims at taking the robot
from one non-ICS state to another. The concept of Safe
Control Kernel is introduced and it guarantees ICS-AVOID
can find a collision-free trajectory if one exists. Recently,
Bautin et al. [26] proposed two ICS-checking algorithms.
Both algorithms take a probabilistic model of the future as
input which assigns a probability measure to the obstacles’
future trajectories. Instead of answering whether a given state
is an ICS or not, it returns the probability of a state being
an ICS. Wu and How [16] extended VO to moving obstacles
with constrained dynamics but move unpredictably.

The work closes to the spirit of our new method is by
van den Berg and Overmars [8]. Their work assumes that
the robot and all obstacles are discs and it conservatively

models the swept volume of an obstacle over time as a cone
with the slope being its maximum velocity. Therefore, no
matter how the obstacle moves, it is always contained in
the cone. However, these assumptions can be unrealistic for
many applications. For arbitrary shapes, computing the swept
volumes is nontrivial.

Collision Prediction. Since the robot has partial or no
information about the environment, it is very difficult to plan
a collision free path for it to move through a field of static or
dynamic obstacles to a goal. One of the biggest challenge is
to predict possible collisions with dynamic obstacles whose
trajectories are unknown. There exists a lot of work which
checks collisions at a sequence of fixed time steps [7],
[27], [28], [29], [30]. For example, van den Berg et al.
[7] performed collision detections at fixed time intervals
(every 0.1 seconds in their experiments). Both the robot and
dynamic obstacles were modeled as discs moving in the
plane. Moreover, the future motions of a moving obstacle
were assumed to be the same as its current motions. In order
not to miss any collisions, they either increased the number
of time steps or assumed the objects move very slowly.

There are also works which adaptively changed the frequency
of collision checks: collisions are more frequently checked
for two objects which are more likely to collide. Hayward
et al. [10], Kim et al. [13] and Hubbard [11] assumed that
the maximum magnitude of the acceleration is provided for
each object. Hayward et al. calculated the amount of time
within which two moving spheres are guaranteed not to
collide with each other. Then more attention was adaptively
paid to objects which are very likely to collide. Hubbard
first detected collisions between the bounding spheres of two
objects. Then the pairs of objects whose bounding spheres
intersect are further checked for collisions using sphere trees
that represent the objects. Kim et al. [13] first computed
the time-varying bound volume for each moving sphere with
its initial position, velocity and the maximum magnitude
of its acceleration. As time goes by, the radius of this
time-varying bound volume increases and it is guaranteed
to contain the sphere at any time in the future. For two
moving spheres, whenever their time-varying bound volumes
intersect, they are checked for actual collision. Chakravarthy
and Ghose [12] proposed collision cone approach (similar
as velocity obstacle) for predicting collisions between any
two irregularly shaped polygons translating on unknown
trajectories. All these methods are limited to discs, spheres
or translational objects. Our new tool allows polygons with
arbitrary shape (even non-simple polygons) with rotation.

Almost all existing works collect sensory data and update its
environmental information at fixed times. As a result, either
updating is redundant or the situation is even worse if update
is performed not frequently. The robot may be at some state
which leads it to be in unavoidable collisions. To address this,
we propose to update environmental belief when necessary
by exploring temporal coherence of obstacles and predict a
critical time t such that the robot is guaranteed to move safely

along its current path until t.

III. OVERVIEW OF OUR METHOD

Planning a path in environments populated with obstacles
with unknown trajectories usually involves two steps: (1) find
an initial path Π based on known information and then (2)
modify Π as the robot receives new information from its
onboard sensors at fixed times. To provide a more concrete
framework for our discussion, we assume that the robot R
still plans a path Π based on its current belief of the state
of the workspace. However, instead of determining if Π is
still safe to traverse at fixed time, R determines the critical
moment t that Π may become invalid. The robot budgets
a certain amount of time 4t before this critical moment t
to update its belief and replan if necessary. We would like
to emphasize that this setting is merely a framework among
other applications of collision prediction.

Because the trajectory of the obstacles in workspace is
unknown, the critical moment t can only be approximated.
To ensure the safety of the robot, our goal is to obtain
conservative estimation t ′≤ t of the unknown value t. Follow
the naming tradition in collision detection, we call such an
estimation conservative advancement on Π and denote it as
CAΠ. To compute CAΠ, the robot assumes that all obstacles
are adversarial. That is, these adversarial obstacles will move
in order to minimize the time that Π remains valid.

Contrary to traditional motion planning methods, the calcula-
tion of CAΠ (performed by the robot) in some sense reverses
the roles of robot and obstacles. The robot R is now fixed
to the path Π, thus the configuration of R at any given time
is known. On the other hand, the obstacles’ trajectories are
unknown but will be planned to collide with R in the shortest
possible time. As we will see later, the motion strategy
for an obstacle Oi will only depend on the the maximum
translational velocity vi and a maximum angular velocity ωi
around a given reference point o, where o is the rotation
center specified by users for an obstacle.

A. Estimate Conservative Advancement on Path Π

Without loss of generality, the problem of estimating CAΠ

can be greatly simplified if we focus on only a single obstacle
and a segment of path Π. Let Π be a sequence of free config-
urations Π = {c1,c2, ...,cn} with c1 = S and cn = G, where
the S and G are start and goal configurations, respectively.
Given a segment c jc j+1 ⊂ Π, we let ECTi, j be the earliest
collision time (ECT) that Oi takes to collide with the robot
on c jc j+1. Then we have CAΠ = mini (min j (ECTi, j)), where
1≤ i≤ |O| and 1≤ j < n. Note that ECTi, j is infinitely large,
if Oi cannot collide with R before R leaves c jc j+1.

Lemma 3.1: If ECTi, j 6= ∞, then ECTi, j ≤ ECTi,k, ∀k > j

That is once an earliest collision time is detected for a path
segment c jc j+1, it is not necessary to check all its subsequent

segments ckck+1 with j < k < n. In Section III-B, we will
provide an overview on how ECTi, j can be computed.

Before we proceed our discussion, we would like to point
out that our method does not consider collisions between
the obstacles. Although this makes our estimate more con-
servative, the obstacle with the earliest collision time rarely
collides with other obstacles.

B. Earliest Collision Time (ECT)

Given a segment c jc j+1 ⊂Π of path in C-space, our goal is
to compute the earliest collision time ECTi, j when obstacle
Oi hits robot R somewhere on c jc j+1. Assume R starts to
move on Π at time 0.

Collision Region

ECT

tj+1
t

T

f

t = T

0 tj

Fig. 2. The red (thicker) curves in both figures are plots of the earliest
arrival time f (t) for an obstacle. Black straight lines are plots of g(t) : t = T .
When there is at least one intersection (blue dot) between f (t) and g(t),
collision region is not empty.

Since the robot R moves along a known path Π, R knows
when it reaches any configuration c ∈ Π. Let t be the time
that R takes to reach a configuration c(t) ∈ c jc j+1 and let
T be the time when Oi reaches this c(t). Because Oi is
constrained by it maximum linear and angular velocities vi
and ωi, there must exist an earliest time T̂ for Oi to reach
any c ∈ c1c2 without violating these constraints. Since every
configuration on c jc j+1 is parameterized by t, this T̂ can
also be expressed as a function of t. Let this function be
f (t). Furthermore, when the robot R and Oi collide, they
must reach a configuration c at the same time. Therefore,
we also consider the relationship between t and T modeled
by the function g(t) : t = T . See Fig. 2.

In Fig. 2, a bold (red) curve represents the earliest arrival
time f (t) and a black straight line represents g(t). These
two curves subdivide the space into interesting regions.

• For a point p = (t,T > t), indicates situations that Oi
reaches c(t) later than t. No collisions will happen
because when Oi reaches c(t), the robot R already
passes c(t).

• The points p = (t,T < f (t)) indicates impossible situ-
ations that Oi needs to move faster than its maximum
velocities in order to reach c(t) at T .

• For a point p = (t, f (t)< T < t) from the region above
curve f (t) but below curve t = T , Oi has the ability to

reach c(t) earlier than R. In order to collide with R, Oi
can slow down or wait at c(t) until R arrives. We call
this region the collision region.

Given that the robot R enters the path segment c jc j+1
through one end point c j at time t j and leaves c jc j+1 from the
other endpoint c j+1 at time t j+1, the earliest collision time
ECTi j is the t coordinate of left most point of the collision
region between t j and t j+1. Therefore if this collision region
is empty, R and Oi will not collide on c jc j+1.

Based on what has been discussed so far, the most important
step of estimating critical moment is to compute f (t), the
earliest moment when Oi reaches c(t). The shape of function
f (t) depends on the type and the degrees of freedom of the
robot and obstacles.

In the following sections, we will discuss three examples of
how f (t) can be formulated when: (1) both R and Oi are
points, (2) R is a point and Oi is a polygon and (3) both R
and Oi are polygons. From these examples, we can build up
f (t) for complex polygons even when rotation is considered.

IV. POINT-POINT CASE

c

p

θ

cj+1
cj

Fig. 3. When both Oi and
R are points, their closest dis-
tance can be computed using
Law of cosines in 4pc jc.

To warm up our discussion, we
start with a point robot R and
a point obstacle Oi without ro-
tation. Let obstacle Oi’s current
pose p coincide with its refer-
ence point o and c(t) is the pose
of the robot at time t. The func-
tion f (t) can be simply defined
as

f (t) = |pc(t)|/vi . (1)

Since R moves with a given velocity, c jc j+1 ⊂ Π can be
linearly interpolated and every point on c jc j+1 is parameter-
ized by 0≤ λ ≤ 1. So the distance L between c j and c(t) is
L = |c jc(t)| = λ |c jc j+1| and, the function f can be simply
written as:

f (t) =
√

L2 +d2−2dLcosθ/vi (2)

where d = |pc j| and θ is the angle ∠pc jc j+1. This is
illustrated in Fig. 3.

In order to compute the collision region, we need to find
out the intersections of functions f (t) and g(t) : t = T . By
replacing f (t) with t, we get a quadratic equation with only
one variable t =

√
L2 +d2−2dLcosθ/vi. By solving this

equation, we can determine the collision region between
[t j, t j+1]. If the collision region is empty, there will be no
collision between Oi and R on path segment c jc j+1. This
operation is repeated on the other path segments until the
ECT is detected; otherwise we report no collision between
Oi and R on the entire path.

V. POINT-POLYGON CASE

Now, we move on to the case where robot R is a point and
obstacle Oi is a polygon that can translate and rotate around
a given reference point o. Without loss of generality, let us
focus on a moving segment p1 p2 ∈ Oi. As in point-point
case, given a configuration c(t) ∈ c jc j+1 which represents
the location of R at time t, we are interested in solving f (t),
the earliest moment when p1 p2 hits c(t).

To estimate the earliest collision time (ECT), we observe that
Oi’s rotation and translation can be considered separately.
That is, f (t) can be decomposed into translational and
rotational components: tT , the time that the point c needs
to translate at velocity vi, and tR, the time that c needs to
rotate at velocity ωi. If we let the closest distance between
c(t) and p1 p2 be a function d(t) of time, we can compute
ECT between p1 p2 and R moving from configuration c1 to
configuration c2 using the following lemma.

Lemma 5.1: The ECT between p1 p2 and c1c2 is:

ECT = argmin
tR

(|tR− tT |) = argmin
tR

(|tR−d(tR)/vi|) , (3)

where d(tR) is the distance between c(tR)∈ c1c2 and segment
p1 p2 when p1 p2 rotates θ = tRω around o.

Proof: The key to this proof is the definition of the
function d(t). In our analysis, d(t) depends on two cases:
(1) p1 p2 and c ∈ c1c2 are sufficiently far apart, and (2) p1 p2
and c are sufficiently close. Details of the analysis can be
found in [31].

In summary, to estimate the ECT of R and Oi, we decompose
f (t) into translational and rotational components: tT and tR
and solve the optimization problem in Lemma 5.1. Since both
translation and rotation decrease the closest distance between
R and Oi, the time spend on translation tT must equal the
time spend on rotation tR. Again, interested readers should
refer to our technical report [31] for detail.

VI. POLYGON-POLYGON CASE

In this section, we briefly discuss the case that both the robot
R and the obstacle Oi are polygons. The robot R rotates
around its center of mass and moves alone the designated
path Π. Obstacle Oi undergoes unknown translation and
rotation around a given reference point o.

Taking the same conservative advancement approach, we will
focus our discussion on the motion strategy that an edge
q1q2 of Oi can take to collide with an edge p1 p2 of R at a
given time t. Our main observation of computing their ECT
is stated in the following lemma.

Lemma 6.1: Given two separating line segments p1 p2 ∈ R
and q1q2 ∈Oi, the earliest collision can only happen between
an endpoint of p1 p2 and q1q2 or an endpoint of q1q2
and p1 p2. Collisions at the interior portion from both line
segments can only happen after one of those two cases.
Proof: See detailed proof in technical report [31].

Essentially, Lemma 6.1 allows us to determine the ECT
of two line segments from only two instances of point-
polygon case discussed in Section V. Given that R and Oi
are composed of n and m line segments, respectively, their
ECT can be determined via 2mn point-polygon case analysis.

VII. PLANNING MOTION USING PREDICTED COLLISION

So far we assume that the robot only stays on a given path.
In this section, we show how to use the predicted collision
in a motion planner. It is important to note that this RRT-
based planner discussed below is merely an example to
show how earliest collision time (ECT) can be used. Other
planners, such as PRM-based planners, can also be
combined with ECT.
In general, there are two desirable properties when a robot
plans a path. First, a path should bring the robot near the
goal. Second, the path should remain safe (valid) for as long
as possible. With these two properties in mind, we propose
to augment RRT with predicted collision. More specifically,
the RRT is constructed as usual but each path from the root
to a leaf is now associated with an ECT. The best path is
then a path in the RRT that has the latest ECT while still
reduces the geodesic distance between the robot and the goal.

VIII. EXPERIMENTAL RESULTS

We implemented the collision prediction method in C++
using Eigen linear algebra library and NLopt library. Ex-
perimental results reported in this paper are obtained from
a workstation with two Intel Xeon E5-2630 2.30GHz CPUs
and 32GB memory. We tested our implementation in four
environments shown in Figs. 1 and 4. These environments
contain both static and dynamic obstacles. For a dynamic
obstacle, its motion is simulated using Box2D physics engine
by exerting random forces. The robot knows the locations of
static obstacles and the maximum translational velocity and
angular velocity of dynamic obstacle. The only way that the

(a) (b) (c)

Fig. 4. (a-c) Polygon-polygon envi-ronments. In all environments, the green
robot and blue robot indicate start configuration a nd g oal c onfiguration, re
spectively. Th e re d ro bot indicates the current configuration a nd t he o
bstacles w hich c ause e arliest collisions are colored in red. Black obstacles
are static and light grey obstacles are dynamic.

robot knows the pose of a dynamic obstacle is through its
(simulated) onboard sensors. The best way to visualize the
environments is via animation. We encourage the reader to
view the videos at http://masc.cs.gmu.edu/wiki/ECT.

A. Compare to a Fixed-Time Strategy

In our first experiment, we compare two planning strategies:
One replans adaptively based on collision prediction using
augmented RRT (see Section VII), and the other replans
periodically at fixed time interval using regular RRT.

Fig. 5 shows the success rate and number of replans obtained
from environments in Fig. 4. The success rate is the number
of runs that robot reaches the goal over the total number of
runs, and the number of replans is the number of times that
the robot replans to reach the goal. The maximum transla-
tional velocity of an obstacle is set to 2m/s and the maximum
angular velocity is set to 3 radians/s. The experiments are
conducted for multiple situations when robot’s velocity is 1,
2, 4, 8 and 16m/s. Each data point is collected over 500 runs
(i.e. 100 runs for each environment).

Success Rate and Number of Replans. From the plots in
Fig. 6, we show that our approach using predicated collision
helps the robot achieve nearly optimal success rate with a
small number of replans. First, let us look at Fig. 6 (left).
We see that the success rate of the proposed method is
almost identical to or even better than the fixed-time
strategy with very high (and almost unrealistic) replanning
frequency (i.e. replan every 0.05 sec.). This is especially clear
when the robot’s velocity is greater than 2m/s. However,
frequent updates introduce a large number of replans. As
shown in Fig. 6 (right), in order to provide a success rate
similar to the proposed method, the fixed-time strategy
needs to replan around 100 times more.

IX. CONCLUSION

In this paper, we proposed an adaptive method that predicts
collisions for obstacles with unknown trajectories. We be-
lieve that this collision prediction has many potential usages
and advantages. Similar to collisions detection in the setting
of known obstacle motion, we have shown that collision
prediction allows the robot to evaluate the safety of each
edge on the extracted path with unknown obstacle motion.
When the robot travels on a predetermined path, collision
prediction enables adaptive repairing period that allows more
robust and efficient r eplanning. C omparing t o a planning
strategy that replans periodically at fixed t ime i nterval, our
experimental results show strong evidences that the proposed
method significantly reduces the number of replans while
maintaining higher success rate of finding a valid path.

REFERENCES

[1] L. Jaillet and T. Simeon, “A prm-based motion planner for dynamically
changing environments,” in Proc. IEEE Int. Conf. Intel. Rob. Syst.
(IROS), 2004, pp. 1606–1611.

[2] M. Kallman and M. Mataric, “Motion planning using dynamic
roadmaps,” in Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, vol. 5. IEEE, 2004, pp.
4399–4404.

[3] T.-Y. Li and Y.-C. Shie, “An incremental learning approach to motion
planning with roadmap management,” in Proc. of IEEE Int. Conf. on
Robotics and Automation, 2002, pp. 3411–3416.

[4] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with rrts,” in
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on. IEEE, 2006, pp. 1243–1248.

[5] O. Khatib, “Real–time obstacle avoidance for manipulators and mobile
robots,” Int. Journal of Robotics Research, vol. 5, no. 1, pp. 90–98,
1986.

0

20

40

60

80

100

0 1 2 4 8 16

S
uc

ce
ss

 R
at

e
%

Robot Speed (m/s)

our method
fixed replan time 0.05
fixed replan time 0.1
fixed replan time 0.2
fixed replan time 0.5
fixed replan time 1.0

1

10

100

1000

0 1 2 4 8 16

N
um

be
r

of
 R

ep
la

ns

Fig. 5. Compare our method to the fixed-time strategy obtained from environments in Fig. 1(b) and in Fig. 4. Each data point is averaged over 500 runs. In the
fixed-time s trategy, t he r obot replans every 0.05, 0.1, 0.2, 0.5 and 1.0 seconds. Notice that the y-axis is in logarithmic scale.

[6] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic a*: An anytime, replanning algorithm,” 2005.

[7] J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning
and replanning in dynamic environments,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), May
2006, pp. 2366 – 2371.

[8] J. van den Berg and M. Overmars, “Planning the shortest safe path
amidst unpredictably moving obstacles,” in Proc. Int. Workshop Alg.
Found. Robot.(WAFR), 2006.

[9] M. Wzorek, J. Kvarnstrom, and P. Doherty, “Choosing path replanning
strategies for unmanned aircraft systemsun,” 2010.

[10] V. Hayward, S. Aubry, A. Foisy, and Y. Ghallab, “Efficient collision
prediction among many moving objects,” Internat. J. Robot. Res.,
vol. 14, no. 2, pp. 129–143, 1995.

[11] P. M. Hubbard, “Collision detection for interactive graphics applica-
tions,” Ph.D. dissertation, 1995.

Robot Speed (m/s)

[12] A. Chakravarthy and D. Ghose, “Obstacle avoidance in a dynamic
environment: A collision cone approach,” Systems, Man and Cyber-
netics, Part A: Systems and Humans, IEEE Transactions on, vol. 28,
no. 5, pp. 562–574, 1998.

[13] H. K. Kim, L. J. Guibas, and S. Y. Shin, “Efficient collision detection
among moving spheres with unknown trajectories,” Algorithmica, pp.
195–210, 2005.

[14] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A.
Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa, “Planning-based
prediction for pedestrians,” in Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on. IEEE, 2009, pp.
3931–3936.

[16] A. Wu and J. P. How, “Guaranteed infinite horizon avoidance of un-
predictable, dynamically constrained obstacles,” Autonomous Robots,
pp. 227–242, 2012.

[17] N. Du Toit and J. Burdick, “Robotic motion planning in dynamic, clut-
tered, uncertain environments,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on. IEEE, 2010, pp. 966–973.

[18] K. Hauser, “Randomized belief-space replanning in partially-
observable continuous spaces,” Algorithmic Foundations of Robotics
IX, pp. 193–209, 2011.

[19] Z. Shiller, O. Gal, and A. Raz, “Adaptive time horizon for on-
line avoidance in dynamic environments,” in Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE,
2011, pp. 3539–3544.

[20] B. D. Luders, G. S. Aoude, J. M. Joseph, N. Roy, and J. P. How,
“Probabilistically safe avoidance of dynamic obstacles with uncertain
motion patterns,” MIT Aerospace Control Laboratory: Technical Re-
ports, Tech. Rep., 2011.

[21] T. Fraichard and H. Asama, “Inevitable collision states. a step towards
safer robots?” in Intelligent Robots and Systems, 2003.(IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on, vol. 1.
IEEE, 2003, pp. 388–393.

[15] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate
through crowded environments,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on. IEEE, 2010, pp. 981–986.

[22] L. Martinez-Gomez and T. Fraichard, “Collision avoidance in dynamic
environments: an ics-based solution and its comparative evaluation,”
in Robotics and Automation, 2009. ICRA’09. IEEE International
Conference on. IEEE, 2009, pp. 100–105.

[23] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore,
“Real-time motion planning with applications to autonomous urban
driving,” Control Systems Technology, IEEE Transactions on, vol. 17,
no. 5, pp. 1105–1118, 2009.

[24] S. Bouraine, T. Fraichard, and H. Salhi, “Relaxing the inevitable col-
lision state concept to address provably safe mobile robot navigation
with limited field-of-views in unknown dynamic environments,” in
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on. IEEE, 2011, pp. 2985–2991.

[25] E. Lalish and K. Morgansen, “Decentralized reactive collision avoid-
ance for multivehicle systems,” in Decision and Control, 2008. CDC
2008. 47th IEEE Conference on. IEEE, 2008, pp. 1218–1224.

[26] A. Bautin, L. Martinez-Gomez, and T. Fraichard, “Inevitable collision
states: A probabilistic perspective,” in Proc. of IEEE Int. Conf. on
Robotics and Automation, Anchorage, AK, 2010, pp. 4022 – 4027.

[27] J. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi, “I-collide:
An interactive and exact collision detection system for large-scale
environment,” in Symposium on Interactive 3D Graphics, 1995, pp.
189–196.

[28] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A hierarchical
structure for rapid interference detection,” Computer Graphics, vol. 30,
pp. 171–180, 1996.

[29] D. Baraff, “Curved surfaces and coherence for non-penetrating rigid
body simulation,” Comput. Graph., vol. 24, no. 4, pp. 19–28, 1990.

[30] J. K. Hahn, “Realistic animation of rigid bodies,” Comput. Graph.,
vol. 22, no. 4, pp. 299–308, 1988.

[31] Y. Lu, Z. Xi, and J.-M. Lien, “Conservative collision prediction among
polygons with unknown motion,” George Mason University, Tech.
Rep. GMU-CS-TR-2013-4, 2013.

