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Abstract—\Voronoi diagrams are extremely versatile as
a data structure for many geometric applications. Com-
puting this diagram “exactly” for a polyhedral set in 3-
D has been a quest of computational geometers for over
two decades; this quest is still unrealized. We will locate
the difficulty in this quest, thanks to a recent result of
Everett et al (2009). More generally, it points to the need
for alternative computational models, and other notions
of exactness.

In this paper, we consider an alternative approach based
on the well-known Subdivision Paradigm. A brief review
of such algorithms for Voronoi diagrams is given. Our
unigue emphasis is the use of purely numerical primitives.
We avoid exact (algebraic) primitives because (1) they
are hard to implement correctly, and (2) they fail to
take full advantage of the resolution-limited properties d
subdivision. We encapsulate our numerical approach using
the concept of soft primitives that conservatively converg
to the exact ones in the limit.

We illustrate our approach by designing the first purely
numerical algorithm for the Voronoi complex of a non-
degenerate polygonal set. We also discuss the critical role
of filters in such algorithms. A preliminary version of our
algorithm has been implemented.
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I. What is so hard about the Voronoi Dia-
gram of Polyhedra?
The concept of Voronoi diagrams is ubiquitous

with many applications. Itis also a core topic in compu-
tational geometryd], [ 14]. For instance, one application
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milestone in this quest: they provided an algorithm for
a special case, the Voronoi diagram for a collection of
infinite lines. It has been implemented @GAL.

91. Three Views of a Voronoi Diagram. It may
sound surprising that this basic problem is still open.
What are the barriers in this quest? There are three
views of the “Voronoi diagram” of a polyhedral set
Q C R% a set-theoretic view, an algebraic topology
view, and a combinatorial view. We use the notations

Vor(2), Vor(Q), Vor*(Q)

to distinguish them. BrieflyVor(Q) is just a subset
of R?\ Q called thegeometric Voronoi diagram; the
pointsp in Vor((2) are those whose Euclidean distance
to the closest poing € 2 is achieved by two or more
¢'s. TheVoronoi complex Vor () is a cell complex in
the sense of algebraic topology; each celVior () is a
subset ofR¢ that is homeomorphic to an open Euclidean
ball of some dimension = 0,...,d — 1. The support

of Vor(Q2) is just Vor(£2). Finally, theVoronoi graph
Vor*(Q) is a labeled combinatorial graph representing
the Voronoi complex: the vertices &for*(£2) are in 1-

1 correspondence with cells ¥or(2), and the graph
edges correspond to adjacency relation between pairs of
cells. A cell of dimension in Vor(2) is also called a
Voronoi cell or ani-cell; wheni: = 0 (resp.,i = 1,2) it

is known as a/oronoi vertex (resp.,curve, surface.
Below, we provide a more detailed account of these

is in robotics where such diagrams are the basis of theoncepts.

retraction approach to motion planningf], [3€], [13],
[37]. Much is known about Voronoi diagrams and its
many generalizations. The books], [1€], [6] focus on

These three views give rise to (at least) three in-
terpretations of what it means to “compute a Voronoi
diagram”

the planar cases. The Voronoi diagram of a point set in « Perhaps we may call the computation\oér*(12)

any dimension is well-understood. But in 3-D, already
the Voronoi diagram of a set of polyhedral objects is

a barrier. For more than two decades, computational
geometers have been interested in an algorithm for such

diagrams (e.g.,4d]). For reference, call this particular
problem (Voronoi diagram for polyhedral objects in 3-
D) the “Voronoi Quest”. This quest remains unfulfilled
today. Recently, Hemmer et allj] announced a major

the standard Computational Geometry view. There
is no explicit manipulation of numerical data, and
the computation can be carried out by postulating
certain abstract “geometric” operations (sé€]].

In visualization and computer graphics, the prob-
lem amounts to computing artapproximation of
Vor(Q). Here, a sef C R? is ans-approximation

of anotherS C R? if the Hausdorff distance



dH(§, S) is at moste; the approximating seb  bel-cells of type{c, ¢, w} (or simply ccw). Thus in3-
might be a collection of boxes (voxels) or be somespace, we have 10 types of Voronoi curves (i.e., 1-cells),
piecewise linear representation. namely

o In computational semi-algebraic geometry, the
problem amounts to computin§or(Q2). Since

the cells inVor(§2) are semi-algebraic sets, their |5 Rd the types ofk-cells may be identified with the

representation is a nontrivial issue. In one inter-monic monomialé of degreed — k + 1 overd variables.
pretation, each cell may be represented symbolThe number of such types is

ically or implicitly by algebraic data (e.g., a set
of algebraic inequalities). Another interpretation ( 2d—k ) — (2d_ k) 2)
is to compute some-approximation of each cell d—Fk+1 d—1

(as in the visualization view). Although cell are For instance, there a

approximated, we require these approximations o, d-space. Ford — 4, there are35 types of Voronoi

induce exactcombinatorial information like adja- curves. Any code for the exact Voronoi diagram must

cencies and isotopy-type. The result is called ancompute Voronoi cells of each type, and each type must

g-approximation of Vor(Q). handle(if’lk) cases of the code.
Clearly the third view point is the most demanding:  €3. On the Subtypes of Typecee. In 3-space, the
an e-approximation of Vor(€2) in the above sense type ece in (1) is recognized as the most demanding
subsumes the information fovor(€2) and Vor*(Q).  case. Solving theee case amounts to determining the
In this paper, we adopt the third viewpoint as our\oronoi curve determined by three infinite lines. The
computational goal. classification of such curves was only recently deter-
92. Types of Voronoi Cells. The cell complex mined by Everett, Gillot, Lazard, Lazard and Pouget
Vor(Q2) has variant definitions in the literature, so we [17], [11]:
will be specific: first partition the boundary 6t into
a simplicial complex called thboundary complex of
Q, denoted®(2). This is collection of simplices of
each dimension, 1,...,d—1; cells in®(Q2) are called
(boundary)features of 2. Our main concern ig = 3,
where features of dimensioris 1,2 (respectively) are
classified ascorners (c), edges(e) andwalls (w). In
general, we classify features into “types” based solel
on their dimension. Thus we havé types. In 3-
space, these types may be labeted, w. Given a set
T C o) of sized—k+1(k=0,...,d—1), we can
consider the semi-algebraic s&{7) C R?\ © com-
prising those pointg; that are simultaneously closest
to each of the features ifi", and such that no other
feature in ®(Q)) is strictly closer toq. We define a
k-cell of Vor(Q2) to be a connected componeéntf This theorem is the basis of the algorithm of Hemmer
such a semi-algebraic s8(7"). We callT agenerator et al. [L5]. According to this classification, the casec
set for cell. In general, the generator set forkecell — gives rise to5 subcases In general, each type will
will have at leastd — k + 1 features; if it could have give rise to exponentially many cases, and each case
more thand — k + 1 features, we say thé-cell is  may give rise to further subcases. Unlike the growth
degenerate Assuming non-degeneracy, the generatorrate in the number of types (sed)), the growth rate
set is unigue. We saf is non-degeneratef none of its  of the number of subcases is less understood. The
cells are degenerate. We will assume non-degeneracy itletermination of these subcases may be quite non-trivial
the current discussion. Thgpe of T is just the multiset  as illustrated by Propositioh This issue already shows
of d—k+1 types represented by the featuredinE.g., up in the plane: see the classification of subcases in
in R3, if T = {c1,c2,w} has two corners and a wall, the exact algorithm for Voronoi diagrams of circles
then the setS(T) (if non-empty) will be a portion of  (“Apollonius diagrams”) §] and of ellipses .
a curve in space, and its connected components would It should now be clear that any exact algorithm for
such Voronoi diagrams is a major undertaking, just

1 It can be shown that each connected component is homeornorphi
to an open ball of some dimension. 2 i.e., power products of (commutative) variables.

cee, cee, cew, cee, cew, cww, eee, eew, eww, www (1)

r€¢"") types of Voronoi curves

PrRoOPOSITIONL (Everett et al. (2009)).

The Voronoi curve determined by three lines in space
are connected components of these curves:

() a non-singular quartic if the 3 lines are pairwise
skew but not all parallel to a common plane nor on the
surface of a hyperboloid of revolution;

y(ii) a cubic and a line if the 3 lines are pairwise skew
and lies on the surface of a hyperboloid of revolution;
(i) a nodal quartic if the 3 lines are pairwise skew and
all parallel to a common plane;

(iv) one or two parabolas or hyperbolas if there is
exactly one pair of coplanar lines;

(v) Between 0 and 4 lines if there are two pairs of
coplanar lines.



to completely enumerate all possibilities. One answenf cases isy{_; (*/F). But since 4%, (2<F) =
to the question posed in the title of this section can(2d;1), the corollary follows. Q.E.D.

now be given: the difficulty in the Voronoi Quest lies ) ] ]
in providing the analogue of Propositioh for the Thus, the technique of symbolic perturbation does

other nine cases oflf. Of course, the good news is not remove the exponential dependencedoror low

that the hardest case has been cracked. Such analy§lignensions, perturbation alone might be enough to
requires some non-trivial algebraic geometry. So isrender exact algorithms practical. For instance, in the

computational geometry destined to become a subfielyoronoi diagrams of polyhedral sets the number of cases

7 9
of algebraic geometry? The main good news of thist® handle arg;) —4 =31 ford =3 and(y) -5 =121

paper is that there is a way out. We will return to this for d = 4 . . . o
in the next section. Interestingly, there is a paradox in the application

4. On Generic Voronoi Diagrams. Propositionl of symbolic perturba_tion. By avoiding the subcases,
can be mined for other insights. The first is that if W& &lso opted to give up advantages conferred by
we try to design Voronoi diagram algorithm using degen_erames. For example, suppose our input is a set
some “abstract computational model” (as is common in°f horizontal rectangles whose edges are parallel to the
Computational Geometry), the subcases of Proposition - O y-directions. Then according to Propositidn
will never be revealed. It is another example of theth€ only Voronoi curves we need to handle falls under
pitfalls of abstract computational models discussed irsuPcase (\v); these are parabolas and hyperbolas. But
[34]. by opting for the generic S|tuat|(_)n, we cannot take
advantage of this “degenerate” situation. Such obser-
vations have prompted Burnikel et al3][to argue
éhat the explicit handling of degeneracies (subcases)
Is preferable to symbolic perturbation. In view of our
) ) discussions of the Voronoi quest, their argument is no

« (a) if two lines are skew; longer persuasive for dimensiodsor above. Indeed,

« (b) if three lines are parallel to a common plane; \e do not even know what these subcases are! On the

« () if three lines lie on the surface of a hyperboloid gther hand, it seems quite feasible to develop an exact

of revolution. but generic algorithm for our Voronoi quest.

Using these predicates, we can then take the appropri- §5. What is new in this paper?
ate branch into the 5 subcases. The efficient evaluation
of such predicates is a central theme of “Exact Geome- proaches, it may be hard to imagine anything fun-

try Computation” (EGC) since the 1990s. Methods for  yamentally new except for “yet another subdivision
their correct and automatic evaluation is today available algorithm”. The key observation is that the primi-

in libraries such as7, [9], [39). Nevertheless, the tives (i.e., predicates and constructors) used in sub-
combinatorial explosion in the number of cases remains  4iision algorithms can be classified asactand

Next, Propositionl contains an outline for imple-
menting the primitives for constructing the Voronoi cells
determined by 3 lines. To detect case (i), we need thre
predicates to check the following conditions:

« In view of the long history of subdivision ap-

a serious barrier to implementations. or (purely) numerical Previous subdivision algo-
A partial remedy is possible if we could tolerate rithms for computing the Voronoi compléXor(Q)
infinitesimal perturbations of the input]| [37]. Such inevitably resort to some exact primitives. Besides

perturbations ensures that you only need to handle  caysing an implementation gap, exact primitives
the “generic inputs” i.e., those that do not satisfy do not fully exploit the power of subdivision,
any algebraic conditions (such as (a), (b), (c) above).  namely, the ability to produceesolution-limited
Algorithms that only handle generic cases are called outputs. We note that the use of exact predicates

generic algorithms Let us understand what symbolic is unavoidable (short of using zero bounds as in
perturbation achieves in the current setting: According EGC) unless we weaken the notion of exactness
to Propositionl, infinitesimal perturbation reduces the Thus we advocate a paradigm-shift for subdivision
subcasegi) — (v) to just subcasé:). More generally, algorithms, away from traditional notions of exact-
symbolic perturbation amounts to getting rid of sub- ness, toward concepts of resolution exactness that
cases.This leads to the following corollary: can be achieved using purely numerical primitives
Corollary 2. The “generic” algorithm for computing (e.g., B3, [39).

« We develop a new subdivision algorithm for the
Voronoi complex of a polygonal set. It is the
first complete solution based on purely numerical

the exact Voronoi diagram of a set of polyhedral objects
in d-space has exactlf?*1!) — (d + 1) cases.

Proof. There are(%f_‘l’“) cases for Voronoi cells of primitives. There is a price for purely numerical
dimensiont. Summing over all dimensions, the number primitives: termination is guaranteed on assuming



non-degeneracy of the Voronoi compldr our  bounded as a function of the combinatorial complexity
implementations, we use ancutoff. Upon cutoff, of Q. An algorithm for cell decomposition goes back
one can invoke a weakened correctness criterioio Tarski's procedure (1951) for deciding sentences in
or resort to exact computation which is relatively the first-order theory of reals, and to Collin’s algorithm
easy in the planar setting. These aspects will beor Cylindrical Algebraic Decomposition (1971). Recent
elaborated in a future paper. progress on this and related problems may be found in
One general contribution is to introduce the idea[1]. Unfortunately, the reduction of Voronoi diagrams to
of soft primitives to this domain. One could say cell decomposition would be totally impractical. Thus,
this idea is implicit in some prior work, but to our Voronoi quest has just acquired a new requirement:
our knowledge it has never been made explicitwe seek not just “any solution” but an efficient and
We believe the full exploitation of soft primitives practical one.

will open up new classes of practical algorithms in  But for this, we must turn to a different computational
computational geometry. There are two main goalsnodel. Computational Geometers normally assume a
in the design of soft predicates (1) simplicity of Real RAM model augmented with suitable (problem
implementation and (2) effectiveness. To achievespecific) primitives. These primitives, if implemented,
(1), we try to reduce all predicate to computing andwould be reduced to semi-algebraic computation as
comparing separations between pairs of featuresabove. But Voronoi diagrams can also be computed
Such computations are very robust (sée]f and  using a more explicitly numerical approach. Perhaps the
easy to approximate to high precision. Goal (2) common form of this approach is based on the idea of
is achieved vidilters that provide conditions that (spatial) subdivision. These are the familiar quadtrees
are sufficient (but not necessary) for a predicate to(2-D) or octrees (3-D); we call thesubdivision trees
hold or to fail. Filters should be relatively cheap in general. Figure 1 is a screen shot from our subdivision
compared to its efficacy. algorithm’s output.

96. Overview of paper. In Section 2, we discuss an
alternative computational model based on the Subdivi-
sion Approach. Section 3 contains a review of some key
subdivision papers for Voronoi diagrams. We attempt
to provide a unifying framework for this literature. In
Section 4, we introduce the basic tools for our approach,
in particular, the notion of soft primitives. Section 5
describes our new subdivision algorithm for the Voronoi
complex of a polygonal set. Section 6 discuss our
implementation and address the issue of filters. We
conclude in Section 7.

[l. Resolution-Bounded Solutions

There is a sense in which our Voronoi diagram quest
is a solved problem: it can be reduced to a key problem
in computational semi-algebraic geometny: [given a
set Y of polynomial equations inl variables, we can
compute a cell compleX of R? such thatY is sign- Figure 1. Subdivision output: Voronoi complex for Bugtraplygjon
invariant over each celt € K. Moreover, we can also
determine the adjacencies among these cells. It is not In brief, the subdivision method use an iterative
hard to define such a s& = %(Q2) so that Voronoi di- process that subdivides an initial regidB, in R?

agramVor(£2) can be partitioned naturally into a union into simple regions. For our purposes, we may assume

of such cells inK. A simple definition ofY to define, these regions aré-dimensional boxes. Once these cells
for each pairf, /' € ®(Q2) of features, a polynomial of are sufficiently “simple” relative td?, the subdivision

the form Dist(q, f) — Dist(q, f’) whereDist(q, f) is  process stops. Finally, we synthesize an approximation

the squared distance from a variable paito the affine  to the setVor(f2) from these simple boxes. To deter-
span of f. ThusY is a system of polynomials in th¢  mine the correct combinatorial/topological nature of the
coordinate variables af. After a post-processing df,  Voronoi complexVor(2) is much harder, especially
we obtain an exact representation\dér(§2). The cells  if exact predicates are disallowed. That is the main
in K are directly related to the combinatorial structure challenge of this paper.
of the polyhedral set?, and the size ofK can be Thus we have two fundamentally different approaches



to computing Voronoi diagrams. ThExact Method  box, then there is a unique subdivision®fcomprising
and theSubdivision Method. The complexity of Exact 2¢ congruent boxes. This subdivision is called fu#
Method is usually a function of the combinatorial size split of B. A subdivision tree 7 rooted at a box3, is a

of the input, i.e., the numben of features of®({2). finite tree whose tree nodes are boxes, and where each
The number of Voronoi cells is polynomial in; the internal nodeB has 2? congruent children that form
best upper bound for this size in 3-D 9(n?*) the full split of B. Thus the set of leaves §f forms
[19. In terms of abstract operation counts (but nota subdivision ofBy. Two boxesB, B’ are adjacent if

bit complexity, the computational complexity of exact their interiors are disjoint an® N B’ is a (d — 1)-box.
algorithms can achieve such limits. In contrast, theA subdivision S is said to bebalanced if for every
boxes in Subdivision Methods are not directly related topair of adjacent boxes i, they either has the same
n but to the “resolution” of the geometric representation.radius or one has twice the radius of the other. In our
Typically, bound the number of boxes as a function ofdevelopment, boxes are assumed to be squares2)

n andthe bit-size of the representation Qf or cubes ¢ = 3).

In any Subdivision Method, there ultimately must be q7. The Standard Subdivision Framework. To
some predicate to control the termination for subdivi-help unify the literature, we borrow the “standard”
sion, and predicates to confirm the presence of a Vorondramework for describing subdivision algorithms from
vertex within a box. Generally speaking, previous al-Lin and Yap P1], where it was used for isotopic
gorithms use a combination of exact and numericalapproximation of surfaces. Input consists of a get
predicates for this purpose. Synthesizing an approximatef geometric objects, a bo¥®, containing the region
Vor(Q) is an easier problem for which purely numerical of interest, anc > 0, and a cutoff parametef. Most
predicates are known. But to synthesize the Voronosubdivision algorithms for computing Voronoi diagram
complex, all previous methods ultimately rely on somemay be viewed as having three phases: Subdivision,
exact predicate. For instance, to confirm the presencRefinement and Construction.
of a Voronoi vertex within a given box, some authors The Subdivision Phase constructs a subdivision tree
directly compute the Voronoi vertex, while others infer 7 rooted atB, and expands leaves until some predicate
this by computing the exact Voronoi points on the C'(B) holds at each lea3. While subdividing a box
box boundary. Our goal is to avoid all such exactB, we also propagate certain information to each of its
computations. children.

The Refinement Phase further refiriEstypically by
balancing the subdivision aB.

In this section, we review several key papers on The Construction Phase takes the subdivisfoof
subdivision algorithms for Voronoi diagrams: Laven- By from the Refinement Phase. For each bWéx S,
der, Bowyer, Davenport, Wallis and Woodward (1992)the typical aim is to find the topology of the Voronoi
Vleugels and Overmars (1995), Teichmann and Tellediagram inside the box. This involves detecting Voronoi
(1998), Etzion and Rappoport (2002), Sud, Zhang andvalls, edges and vertices in a box. The output of this
Manocha, (2007), Boada, Coll, Madern and Sellaréephase may be a collection of boxes (that formean
(2008), and Stolpner, Whitesides and Siddigi (2011) Incover of the geometric Voronoi diagralor(€2) or an
our assessment, only Etzion and Rappoport, and Sud;approximation of the Voronoi compleXor(£2).

[1l. Literature Review

Zhang and Manocha provide algorithms for computing
the Voronoi complex, while the other algorithms mainly | STANDARD SUBDIVISION FRAMEWORK
compute the geometric Voronoi diagram. Input: A setQ of objects,c > 0 and By.
We first establish a common terminology for these |Output: An e-approximationG to Vor(f2).
subdivision methods, basically followin@]]. A box 0. LetQi, < {Bo} be a queue of boxes.
(or d-box) B is a subset ofR? (d > 1) of the form 1. Qout < SUBDIVIDE(Q;n).
B =1 x Iy x--- x I; whereI; = [a;,bj], aj < 2. Qpes < REFINE(Qout)-
b;, are closed non-degenerate intervals. Teater of 3. G+ CONSTRUCT(Qrey)-
a box B is denotedm(B) (or mp). The box has2? _ - - -
vertices and2d faces Thus each face is &l — 1)-box. We next review the literature using this framework.

Its radius is the distance fromn(B) to any vertex, Many, but not all, of these algorithms can be put into
where the distance between any two poiptand g is this standard framework. For instance, the Refinement

the Euclidean distand — ¢||. A collectionS of boxes and Construction Phases are sometimes merged into one
is called asubdivision if the boxes inS have pairwise _ _ o
3 Actually [21] calls this the “Generic Subdivision Framework” but

d|5]0|nt_|nter|0rs; we Saﬁ_ 1S aSUb_dMS'()n Of_ the_ Sel e call it “Standard" to avoid confusing this with the earliscussion
US (union of the boxes irnS). For instance, ifB is a  of “Generic Algorithms” based on infinitesimal input petiation.



computation. If both these fail, then subdivid®. The children ofB
98. Lavender et al. R0] inherit the labels of the vertices shared with for the
This paper claims credit as the first paper to provideremaining vertices, we have to compute their distance
a subdivision algorithm for Voronoi diagram$.The  from ; this is unlike Lavender et al.
objects inQ2 are semi-algebraic sets][ To reduce the Refinement PhaseThe algorithm balances the sub-
complexity of estimating distances g they subdivide division tree.
the objects, in addition to the usual spatial subdivision. Construction Phase: There is no explicit construc-
Thus, this can be viewed as a generalization of oution of the topology of the Voronoi diagrams inside cells
standard framework. It has no Refinement Phase. with more than one label and size smaller tidan
Subdivision Phase:This phase consists of two sub-  There is no topological guarantee. The only guarantee
phases: Object division phase and a Voronoi divisionjs that if § is small enough then the set of output boxes
phase. In the former phasg, is subdivided to obtain forms a connected component if the Voronoi diagram is
a sequences of boxes covering the boundary of ¢a€h  connected. Their key observation is the following: there
Q2. The Voronoi division phases uses this covering’of s a g such that for a bo¥8 whose interior contains the
to estimate the distance from a pojntb /. The distance \oronoi diagram, ifw(B) < § then either]A\(B)| > 1
of any point to an object is thus an interval; if two such or |\(B’)| > 1, for some boxB’ adjacent toB. No
intervals are disjoint then we know thatis closer to  quantitative value fors is given. The algorithm does
one object than other. We label every békwith a  not handle degeneracies.
set of objectsy(B) as follows: compute the distance  q10. Boada et al. | Their setQ of objects contains
of B to the objects irf2; consider the interval that has arbitrary geometric objects in 2-D and 3-D. Similar to
the smallest lower and upper boung(;B) is the set of  vleugels and Overmars, they assume that the distance
all objects whose lower bound is in this interval. The function for these objects can be Computed exacﬂy_

termination criteria are eithee)(B)| = 1, or the size  Moreover, the metric underlying the distance function
of B is smaller thard. If both tests fail, then subdivide need not be euclidean. We describe their algorithm in

B. The ¢-set of the children of3 is a subset ob(B).  2-D. There is no refinement phase.

Construction Phase: The topology of the Voronoi Subdivision Phase:Let B be a boxB in a sub-
diagram inside each leaf box in the Voronoi division givision rooted atB,. The objects close taB are
phase is detected by solving a corresponding systerategorized into three types: objects containediare
of multivariate polynomial equations. For solving thesecalled anZ-objects (internal objects); objects closest
system of equations, Newton-Raphson method is usedp a vertex of B than any other object are called a

The algorithm computeSor(€2). It does not provide  y_gpject; objects that are nat-objects and are close
any topological guarantees; in fact, the Newton-Raphsof, some subset of an edge &f are calledB-objects
method can fail if the starting point for the iteration (houndary objects). The termination criteria are either
is not carefully chosen. Moreover, the use of a boX-the union of thez- objects,V-objects and3-objects of
covering for representing objects implies that boxes farg s g singleton set, or the size @ is smaller than
away from the actual Voronoi diagram may have mores The subdivision process always maintains a queue
than one labels, since the distance computation deviatqg While subdividing theZ- objects,V-objects and3-

a lot from the actgal distance. The algorithm does NOlybjects of B are appropriately distributed amongst its
handle degeneracies. children. The crucial step in subdivision is checking the

99. Vleugels and Overmars $2] The inputis  coherence between two adjacent bokes3’: the V), B-
an indexed set containing convex compact sets. Theypiacts of 3 and B’ should match on the shared vertices
compute the distance function to the objects exactlyor edges. If not then the larger box is subdivided. Note
this avoids the box-covering approach of Lavender et al.jhat a box that was terminal can become non-terminal
and hence the distance between the computed Vorongj this step.
diagram and the actual Voronoi diagram is bounded.  construction Phase:Assuming no-degeneracies, the

Subdivision Phase:nstead of labeling the box, they poyes in the partition 0B, fall into 7 different patterns
label the vertices of3 with a unique object fronf2; in depending upon whether the numbefdbbjects of the
case of ties, choose the object with the smallest index,qy s 1,2,3 or 4. Depending upon this number and
Let A\(B) be the set of labels gs;igned to the verticesi o pattern of thé/-objects, marching-cube type rules
If |A(B)| > 1 then the Voronoi diagram intersects.  gre given to obtain an approximation to the Voronoi
The termination criteria are similar to Lavender et al':diagram in each of the boxes; e.g., if there is an
either [\(B)| = 1, or the size ofB is smaller tham.  ¢qge whose vertices have differefitobjects then the

4 Subdivision has been used earlier in the context of solidetirg} Voronoi d_|agram must |r_1tersect this edge. )
for instance 4. There is no topological guarantee. The algorithm



does not work correctly if the Voronoi regions are guarantee on the topology.
disconnected (this is mainly governed by However, 912. Etzion and Rappoport [LO]:  They compute
they give a qualitative bound on how smaélshould be the Voronoi diagram of a bounded 3-D polyhedron.
to guarantee the connectedness of the Voronoi diagrani.hey guarantee the correct topology of Voronoi Dia-
The same bound also implies that all boxes containegram when there are no degeneracies. The)sist the
in the Voronoi region of an object will have their-  boundary complex of the 3-D polyhedron, ait is
objects correctly labelled. The algorithm cannot handlea bounding box for the polyhedron. There refinement
degeneracies. phase is called as a subroutine in the construction phase.
911. Teichmann and Teller Bl The setQ) con- Subdivision PhaseFor every boxB, the set)(B) of
sists of triangles in 3-D. Output is an approximation objects whose Voronoi region interse@sis computed.
to Vor(€). Unlike other approaches where the boxesTo introduce their termination criteria, we need to define
are labelled while subdividing, their labeling is done some special combinations of objects: A type-0 set of
after an initial subdivision phase. Also, they subdivide objects consists of a corner and two collinear edges such
tetrahedrons rather than boxes. that the two edges are incident on the corner; a type-
This phase consists of three sub-phases: a coverinfj set of objects consists of an edge and two coplanar
phase, a propagation phase and a standard-subdivisiovalls such that the edge is shared by the two walls. A
phase. box B is a leaf if one of the following predicates hold:
» Covering phaseBy is subdivided until a covering o |6(B)| < 4.
of Q2 is obtained such that each bdx contains at e |¢(B)| = 5 and ¢(B) contains either a type-0 or
most one triangle (assuming no two triangles are type-1 set.
adjacent), and the six tetrahedrons that share the « |¢(B)| = 6 and ¢(B) contains either two type-0,

vertices of B and partition it do not contain more or two type-1, or a pair of type-0 and type-1 sets.

than one corner fronf2. ReplaceB by these six « All the objects in¢(B) share a vertex.

tetrahedrons; lef” be such a tetrahedron. « All the objects ing(B) except one share a vertex
« In propagation phase a label s¢t7T’) C Q is and a plane.

computed for eacli’. In this phase a conceptual They show that if there are no degeneracies, then
wavefront emanates from each feature (hat eventually one of these predicate will be true. The set
time zero. The region where two wavefronts meet(B) is computed by checking whether the bisector of
corresponds to the Voronoi diagram. The ¢€I')  a pair of objects intersects a face Bf this uses exact
contains the input triangles whose wavefront meetsarithmetic. To compute the label-set of the children of
T'. The timeframe between which wavefronts enter 3, we only need to consider the objectsdB).
and leaveT is smaller than twice its radius. Also  Construction Phase: Given a box B and its set
label the corners of" with the triangle nearest to  4(B), they first detect Voronoi edge intersections with
it; let \(T") be this set. the faces ofB. Since a bisector of two objects is a
« Standard-subdivision: Subdivide eahuntil ei-  quadratic surface, its intersection with a face ®fis
ther some predetermined number of labels remaira conic. Thus checking if a Voronoi edge interseBts
(usually determined experimentally), oX(7')] <  reduces to intersecting two conic sections. To detect a
|¢(T)|, or radius ofT" < ¢. While subdividingT’,  \Voronoi vertex inside a box, they use the following char-
the label set) of its children is a subset af(7)),  acterization: A box3 contains a Voronoi vertex iff there
and is obtained by a proximity test. is an edge that intersects its boundary an odd number of
Refinement PhaseT is subdivided by planes paral- times. Since the edge-intersections are known, this test
lel to its sides and passing through the edge midpointsan be easily implemented; they assume, though, that
to get a balanced subdivision. Updatél’) and \(T")  every box has at most one Voronoi vertex. To construct
during refinement. Voronoi edges, they further refine the subdivision until
Construction Phase: The Voronoi diagram is ap- no edge intersects the box more than twice; if an edge
proximated inside eaci’ depending upon the size of intersects a boxX3 exactly twice then connect the two
¢(T) and\(T). The canonical case {3(T)| = |¢(T)|.  edge-intersections on the boundary Bf A Voronoi
So, e.g., if|¢(T)| = |MT)| = 2 then compute the face is determined by a sequence of edges that have the
bisector of the two labels and intersect it wiify if same generator set.
|op(T)| = |A(T)| = 3 then intersect the three bisectors  Their algorithm is the first complete algorithm that
and find the edge that intersect wiify similarly, find  constructs a topologically correct Voronoi diagram of a
a Voronoi vertex insidd” if |¢(T')| = |NT)| = 4. 3-D polyhedron assuming no degeneracies. To handle
Their algorithm computes an approximation to degeneracy, the) cutoff parameter is used to stop
Vor(£2). It cannot handle degeneracies, and there is ndhe subdivision process. The topology of the Voronoi



diagram is guaranteed in boxes of size greater than to a point. Their algorithm is also complete, though,
Their algorithm differs from our algorithm in the use of again it uses exact arithmetic.
exact arithmetic, since they need to intersect two conic €14. Stolpner et al. [?] They also consider the prob-

sections exactly, thus introducing algebraic predicatesm of computing the medial axis of a 3-D polyhedron

Moreover, they do not use soft predicates. Q; let 9(Q) be the boundary of the polyhedron. The box
€13. Sud et al. B0] They consider the same problem B, is a bounding box fof.

as Etzion and Rappoport and build upon their work. L )
Two key difference are the use of some soft predicates, SUbg'V'S'On Phase:Let D(p) := infgeo(o) [[p — dll;
and computing an approximation to the Voronoi dia-? € R’ be the distance fun?f:uon agssouated wath
gram that is homotopy equivalent to the exact VoronoiConsider the gradienvD : R® — R” of D. For all
diagram. points on the medial apsVD |s_mult|valued.; for all

Subdivision PhaseSimilar to Lavender et al., a label POiNts not on the medial axis, it has a unique value.
set$(B) is computed forB. To compute this set they L€t S be the boundary of a sphere inside The
use a soft predicate first introduced by Milenkovi¢], ~ @verage outwa}dfflngotiVSD through S is defined as
Let m be the center and the radius ofB. Letd(m, ) ~ AOFs(VD):= ===, whereNs is the outward
be the distance fromn to the nearest object ifR. An  normal of S. It is not hard to see that if the medial
object f € Q belongs to the label sep(B) if the  axis does not intersed then as the area & tends to
distance fromf to m is smaller thani(m, Q)+2r. They ~ zero AOFs(VD) tends to zero. To computéOFg, a
also use two exclusion tests based upon upper boundet of N points is chosen front' and the discretized
on Voronoi regions for objects. A bok is a leaf if one  versionAOF’ of AOFg is computed. Given an initial
of the following holds: resolutiono < 0, partition the interior of2 into boxes

R |¢~5(B)| - 1. of sizeo. The algorithm will refine these boxes. A box

« (The Homotopy Criterion) the intersection of the 5 is & leaf in one of the following hold:
Voronoi region of af € ¢(B) with the boundary
of B is homeomorphic to a disc, which ensures
that the Voronoi diagram insidB can be retracted
to a point.

- If B intersects a sef C {1 of objects, them(5) Construction Phase:To find the medial axis inside

e e e LS8, DO o e subdhision phase, h follow
) observation is crucial: Lej:= D(p), for a scalar
boxes are called boundary boxes. at:=p+7VD(p)

o _ ~ such that thep + YV D(p) € Q; the segmenip, ¢|
To test the homotopy criterion they first compute the;iarsects the medial axis i D(p) # VD(q). Thus

arrangements of the conics obtained by intersecting, fing a point near the medial axis insid a binary

the Voronoi regions of the objects in(B) with the search can be done. By choosing more pojnt the

faces of the box3. The edges and the vertices in the po,nqary ofB, a pointwise approximation to the medial
arrangement are labelled with the objects generating,is inside can be obtained.

them. A connected sequence of edges sharing a common

label f € ¢(B) form the boundary of the intersection Usually, the input consists of an angle and the
of the Voronoi region corresponding to the objett output consists of points on the medial axis that have

with the faces ofB. For computing an arrangement of €Xactly two nearby points on the boundarybénd the
conics, they use an algorithm by Keyser et af][The ~ 2ndle betwe/en these nearby point=is In this case,
termination criteria for boundary boxes implies that thetn€ teStAOF (V) < 0 is replaced bAOFy (V) < —c-
Voronoi diagram of the objects iy always intersects

sin «v, for some positive constant< 1. Thus vertices on
the boxes. For completeness, they show that a box wilihe medial axis cannot be detected, since they have more
eventually satisfy one of the three criteria.

than two points on the boundary nearest to them. Their
Construction Phase:They first construct an approx- &/90rithm only provides a one-sided approximation to
imate Voronoi grapiVor* (2). For each box satisfying ¥ (¢2) and no guarantee on the topology.
the homotopy criterion, they place a node at its center Milenkovic [23] has described another algorithm for
and connect it to the intersections of the conics on theapproximating Voronoi diagrams of 3-D polyhedron
faces of the box. The rest of the construction phase i§he algorithm does use subdivision, but only as an
similar to Etzion and Rappoport. optimization step. The main emphasis of his approach
Their homotopic approach can handle near-is to trace the Voronoi edges starting from Voronoi
degenerate situations, i.e., vertices with more than 4ertices. He uses linear programming to detect Voronoi
generators, since these configurations can be retracteetrtices.

o AOF(V) > 0, where S is the circumscribing
sphere arounds.
« Size of B is less thans and AOF(V) < 0.



IV. Voronoi Diagram of Polyhedral Sets

To begin the development our new algorithm, we now ‘ ! ,
introduce some basic concepts. L@tC R?. Call it a - Zeh) O
polyhedral set if it is a closed set whose boundary | 4(€) | et i Zler) b 8.
can be partitioned into a finite set of vertices, open line € e g )
segments and open triangles. Our goal is to compute an ‘ ‘
e-approximation ofVor(£2). For most of this papef L Z(e) @
may be assumed to be fixed. ‘ (i)

915. Geometric Voronoi diagram. To define the _ _
geometric Voronoi diagraior (€2), we begin with the F_l)gL(J:re 2. (l)dZ(ér&es ('):fthte oriented featurgs= {eo,e1,eT, e }.
. 1l orner an e reatures
well-known conceptof separation. Forl, B C R¢, the 9
separation betweenA and B is

Sep(A, B):= inf {|la — b|| : a € A,b € B}. For simplicity, we first focus on the planar setting.
Generalization of the basic definitions to 3-D is then
If A = {p}, we simply write Sep(p, B) instead of straightforward. As motivation, consider the case where

Sep({p}, B). We also introduce the “set extension” of ¢! IS just the closed line segmef, whose boundary
Sep, denoted0Sep(A, B) where complex has three features:

IZISep(A,B) = {Sep(a,B) RS A} Qo = {(x,O) 0z < 1}’ (I)(Q) = {67607612’3)
Note that [Sep(A,B) is non-symmetric as wheree = {(z,0):0 <z <1} is an open line seg-
OSep(A, B) # USep(B,A) in general. If A is @ ment, ande, e; are its two end points. The zor#(e)
connected set, therllSep(A, B) W0U|dd be a real of an open line segmetin the above example was an
interval. Theclearanceof a pointg € R” is just its  infinite strip (the strip is an open set, not including its

This function is symmetricSep(A, B) = Sep(B, A).

separation front, boundary). We thus obtain a partition Bf into three
Cla) = CF —g Q). simple regions calle@ones Z(ey), Z(e1), Z(e). Z(e)
(@) 2(0) epla. ) can be further refined as follows: regard the segment
The clearance ball of ¢ is the closed ballD(q) = e as two oriented segments™ and ¢~. These are

Dq(q) centered ag with radiusC?(q). SinceQ2 is non-  called oriented features and their respective zones
empty,Cl(q) < oo and Dq(q) N is non-empty. Call  Z(et), Z(e~) are semi-infinite strips whose union is
g € R? a Voronoi point of  if Do(q) N contains  the original strip, and whose intersection ds where
more than one point. Finally, th&oronoi diagram a zone lies to the right of its directed segment. These
Vor(12) is defined to be the set of Voronoi points@f  zones are illustrated in Figuia).

Observe that Voronoi points must lie in the complement The zones in the above example can be neatly

of Q, and henc&or(Q) € R4\ Q. captured if we introduce a variation of our separation
q16. Voronoi complex. Next we define the Voronoi function Sep(4, B): define

complex Vor(£2). Recall that the boundarg(Q2) is Sep(A,B) if [||a—b|| = Sep(A, B)]

partitioned into the boundary compléx () of vertices, Sep™(A,B):= for somea € A,b € B,

edges and triangles where edges are open line segments, 00 else

and triangles_do not include their bogndaries. Note that ~, Sep*(A, B) the +-separation of A from B.

the usual notion of faces &t are maximum connected Clearly, if A, B are closed sets thefiep*(A,B) =

planar subsets ob((2), and these are polygons. In Sep(A, B). Relative to (2, ®(f2)), we define the

order to get a simplicial complex, we arbitrarily split Voronoi region of f € &(2) to be the setV(f)

such polygons into triangles. The simplices dfQ2) ~ COmPprising those pointg in the complement of(2
lledfeatures For any pointg € B3, defines(q) whosex-separation fromf is at most thex-separation

are ca y ' : q from any other featurg:

to be the set of those features dn((2) that intersect )

D(q). For B C R4, the feature set ¢(B) of B is  V(f):={g€R*\Q: (Vg€ &(Q))Sep”(q, f) < Sep”(4.9)}

Uil -q € B} In the example?, in (3) above, we now see the zone of
5 In the Voronoi diagram literatureSep(A, B) is frequently f € {e, o, 1} is just the Voronoi region Of relat'_ve to
called a “distance function” and denoteldA, B). Unfortunately, it~ ®(€2y). More generally, for any featurg in a arbitrary
fails the triangular inequality expected of distanc8sp(A,C) < set Q. the zoneZ(f) can be viewed as the Voronoi
Sep(A,B) + Sep(B,C). For instance, the relations fails if S .
region of f relative to a subse®y(f) = {f, fo, f1}

Sep(A,C) > 0andB = AUC. So for Euclidean sets, we generally ! e
let d(A, B) denote the Hausdorff distance. defined as follows: iff is an edge, therf,, f; are the



two endpoints off; if f is a corner, theryy, f; are the
two edges that shargsas endpoint.

SupposeF C ®(Q) is a set with at least two
features. LetV' (F):= N{V(f): f € F}. We define a

a cone with apex. Figure 2(ii) illustrates these two
possibilities (convex corner in red, concave corner in
blue).

917. Soft Predicates. The most basic predicate

Voronoi cell to be a connected component of a set ofwe consider is the following: given a bak, doesB
the form V' (F). The simplicial nature of our boundary intersectVor(€2)? This is encapsulated by the logital
complex®(Q2) ensures that each cell is either a point orpredicateC(B) that returns true iffB N Vor(Q) = 0.
homeomorphic to an Euclidean ball of some dimensionBut our true interest is in the 3-valued predicétéB),

i =1,...,d — 1. Moreover, for each Voronoi cell’
we associate the maximal setof features that define

C : B~ {IN,ON,0UT}

C. The collection of these cells constitute our Voronoi that approximateg’(B) in the following sense:

complexVor(£).
The zone idea originated in Kirkpatrick ]. Tradi-

(1) ConservativeC(B) = IN impliesC(B) is true, and
C(B) = 0UT implies C(B) is false.

tionally, it is viewed as a method to split a Voronoi (2) Convergent: for any sequengs; : i > 0} of boxes

cell into simpler “subcells”. But in in our subdivision

that converges to a poipt C(B;) will converge toIN

setting, we view Kirkpatrick’s trick as an effective (resp.,0UT) if p € Vor(Q2) (resp.,p & Vor(f2)).

“filtering” mechanism in computing soft predicates. We

next address a refinement of this filtering.
Henceforth, we assumg is regularized meaning

Thus theON-answer is viewed as an indecisive an-
swer, as opposed to the decisi¥8- or OUT-answers.
We used the “distributional technique” to evaluate such

that it is non-empty and) is equa| to the closure of soft predicates. Recall the notion of the feature set
its interior. The latter requirement says th@tdoes ¢(B), comprising those features that are closest to some
not contain isolated points or line segments or slits,point B. But for soft predicates, we prefer to define

for instance. Thus the sél, in (3) is not regularized.
Recall that the geometric Voronoi diagravior(€2) lies
in the complement of), i.e., Vor(2) N Q is empty.

the set¢(B) that is an approximation of(B). The
influence discD(B) of B is centered aitnp with radius
Cl(mp)+2rp. We say that featur¢ belongsto a box

We shall now refine the zone idea to take advantagd if the D(B)Z*(f) is non-empty. In particular, we

of a regularized). For each featuregf € ®(9), we
have defined its zon&(f). We now define theriented
zone Z*(f) which has the property th&t*(f) C Z(f).
Computationally, replacing/ (f) by Z*(f) will greatly
improve the effectiveness of zone filtering.

For a regularized? C R?, we can replace each
segment by its oriented versioa™ where we adopt the
convention that these™ result in a counter-clockwise
orientation around the boundary of each polygorfof
We defineZ*(e) to be the zone of ™. Note that locally,
arounde, Z*(e) lies in the complement of2.

For each corner featurg we defineZ*(c) as follows:
suppose: is the endpoint shared by two edgeande’.
Intuitively, we would like to define the zone efto be
RNR' whereR (resp.,R’) is the zone of: when viewed
as an endpoint of (resp.,e’). The setRN R’ is a cone

have
Sep(m(B), f) < Cl(m(B)) + 2r(B). 4)

This conservative predicate was first used by Milenkovic
[23]. Let ¢(B) denote the set of features that belongs
to B. For example, in Figures(a), the cornerf and
two edgesg, h belongs to the boxB. Thus ¢(B) =
{f,g,h}. But in Figure 3(b), the cornerf does not
belong to B becauseZ*(f) is empty. We say a set
of featuresy(B) is inseparableif [¢(B)| = 1 or there
exists a corner € ¢(B) such that for each feature
g € ¢(B), g # cimplies g is an edge with an endpoint
at c. Thus, the set(B) is inseparable in Figuré(a)
but separable in Figurg(b).

The key properties are:

LEMMA 3.

pointed atc. But we can do better: the cone, locally at (i) Conservativeip(B) C ¢(B).

¢, either lies inQ2 or lies in the complement d®. Since
the Voronoi diagram lies only in the complement(of
we may therefore defing*(c) to be the empty set in
the former case, and*(c) = RN R’ in the latter case.

(i) Convergent: Let B, : i > 0) be an infinite sequence
of boxes that strictly converges to a pointB; — g as

i — oo. Theng(B;) — &(q), i.e., d(B;) = ¢(q) for i
sufficiently large.

The definition of oriented zones is illustrated by the (jii) Distributional: If B’ is a child of B, theng(B’) C

non-convex pentagon (colored cyan) in Figuz@i).

There are 5 corner features and 5 edge features in the

boundary complex®(2). For an edges, Z*(e) is an

3(B).

This lemma implies that no feature outside;ﬁfB)

semi-infinite strip (two such zones are colored pink inhas any influence on the Voronoi diagram restricted to

Figure 2(ii)). For a cornere, the oriented zon&*(c)

6 By “logical predicate”, we mean a standard 2-valued truth

is empty if ¢ is a concave corner, and otherwise it is function. Geometric predicates tend to be 3-valued.
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o Cy(B) says|¢(B)| < 3. B
o Ci(B) says: if Cl(mp) < rp then ¢(B) is an
inseparable set.
o C3(B) says that if B is “(f,g)-special” then
Cl(mp) < (3r%)/(2«) wherea = Sep(f, g).
We must explain the concept of a “special” box here in
C>(B). A pair (f,g) of features is called parabola
generatorif f is a corner ang an edge, and@*(f) N
Z*(g) is non-empty. A box3 is said to bg f, g)-special

Figure 3.  (a)p(B) = {f, g, h} is inseparable, (bp(B) = {g, h} (or simply specia) if the following three conditions
is separable hold:

Cl(mpg) + 'Z'r;;

(a) inseparable (b) separable

o (i) [ B is g-monochromatic] The four vertices &f
are all labeled withy.

B, and that whem is small enoughj(B) = ¢(B). The « (i) [B is free of featuresf((mp) > rp
distributional property ensures that when we split a box, ¢ (iii) [ B has potential incursionf, g € ¢(B) where
the children only need to inherit features from its parent. ~ (f,9) is @ parabola generator. It generates the
The basic idea for defining the soft predicat&3) special parabolaof B.

is defined to bedN as long as;g(B) is not “simple”.  One might naively conclude from condition (i) th&k
When 5(3) is “simple”, we will determine if@(B) is  belongs to the Voronoi region gf. Vleugels-Overmars

IN or OUT. Moreover, by repeated subdivision of boxes, [37] points out this fallacy, and invoked a lemma
eventuallyg(B) will be “simple”. of Siersma to show that if the boxes are subdivided

“sufficiently”, then Voronoi bisectors must be detected
V. Subdivision Algorithm for the Voronoi in a box adjacent td3. Our analysis provides explicit
Complex bounds for detecting this condition and this is encoded

) ) _ in our definition of special boxes.
We now describe a new algorithm for computing an

non-degenerate polygonal $tC R2. The input is the Phase halts.

polygonal set represented by its boundary complex  q19. Refinement Phase. Following Vleugels-
®(Q2), a resolution parameter> 0 and an initial box  Qvermars $], we balance the subdivision in this Phase
By. The output will be are-approximation ofVor(2)  (je., split a box if it more than twice the size of a
restricted toBy. To avoid the issues of boundary pro- neighbor). More precisely, at the start of this phase,
cessing (cf. {]), we assume thadB, is nice (has no poxes satisfy|¢(B)| € {1,2,3}. The candidate boxes

Voronoi vertices or tangential intersection with Voronoi 4re those withd(B)| > 1, as these may contain Voronoi
curves). Our algorithm follows the standard subdivisionpoints_ It suffices to balance candidate boxes: this is

algorithm of §7 with its three Phases. easily done using a priority queue.

For simplicity, our description below assumes- oo, €20. Construction Phase. Our goal is to introduce
i.e., we are only concerned with topological correctnessiodeswhich are either points in the interior of a box
and not geometric accuracy. A simple method to enforcgrepresenting Voronoi vertices) or the interior of box
a finitee-bound is to further subdivide any box that po- edges (representing via points for Voronoi curves). We
tentially contains Voronoi points during the Refinementalso need to introducarcs which connect these nodes,
Phase. More efficient methods can be devised, as a posiepresenting portions of Voronoi curves. The resulting
processing Phase. We address this in the full paper. graphG = (N, A) whereN is the node set and the

918. Subdivision Phase.We only have to describe arc set will be arc-approximation ofVor(Q). Figure4
the box predicat€’'(B) which provides the termination illustrates such nodes and arcs.
criterion. We use the standard distributional approach: Let S be the subdivision ofB, at the end of the
for each boxB in the subdivision tree, we maintain Refinement Phase. segmentrefers to a side of a box
its feature setp(B) and labels for each vertex of in S that contains no vertices. Because of balancing, the
B. In general, for any poing, its label \(¢) is the side of a box inS is either a segment or the union of
feature f which is closest tay subject tog € Z*(f).  two segments. A segmentrisonochromatic or bichro-
Note thatA(q) is undefined ifg belongs to naZ*(f); matic depending on whether its endpoints have identical
labels need not be unique, but we break ties arbitrarilyor different labels. Recall that a box is monochromatic
The predicate”(B) is a conjunction of three simpler if all its vertices have the same label; we now say it is
predicates(C'(B) = Co(B) A C1(B) A C2(B) where  fully monochromatic if every segment in its boundary
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: TP Peo—0 « Otherwise, we introduce a node in each bichro-
matic segment of3. Either two or no node will
T D@y be introduced. In the former case, we introduce an
arc connecting them. The arc is generally a line
; G ® o ® o) Q Qi : i
o0 o s b segment, but if two nodes belong to one side of
i o PO 1 B, we use two line segments. See Fig&(b).
NODES® |! & & o o © ©i
ARCS: ™. || 10) (9) 3

is the presence of bichromatic segments. The simplest _ .

examples are shown Figuréa,b,c) when the box has (%> 00 Ve ey C0F A GOl s 6 F
only four segments. Case(c) cannot arise when ther@nree distinct labels) (e) Passes (two distinct labels)

are only kinds of labels. Figuré(a+,b+) are similar

to Cases(a,b) (respectively) but in situations where the _ ~
box has more than 4 segments. As a default, we place 922. Boxes with three features.Next assumey(3)

the nodes in the middle of the segment, but simpleh"’lS three featureg’, g and h. Wlog, assume thaf, g

interpolations can produce more accurate placementidve the same type (both corners or both edges). The
(we do not do exact computations to place the nodes a@llowmg computation constitutes th@oronoi Vertex
they may have irrational coordinates). Besides bichro- est.
matic segments, there are two other basis for introducing * Check if the straightline bisector of g intersects
nodes: in the middle of a box for Voronoi vertices, and ~ B. If it does not, the Testails. We can discard
there is also a possibility to introduce two nodes in a  €ither f or g. Then the construction is reduced
segment. to the previous case wherg)(B)| = 2. See
Arcs are introduced inside each box, connecting  Figure6(a).
nodes on its boundary or its interior. As a default, we ¢ Otherwise, suppose the bisector intersBcat the
use a straightline segment for an arc; the exception is  Points p,q. To be specific, we may direct the
when we connect two nodes on the same side, as in  bisector fromp towardsg with the property that
Figure4(g). Observe that each box has at most two arcs, ~ the approach begins from points which are closer

unless there is an interior node in which case there are 0 f andg than toh. We may further assume that
three arcs. the labels op andq are nevey (that is, if the label

could beg, we simply choos¢ as tie breaker). We

P have three possibilities:
< o If A(p) = M) = f, the Testfails. In this case,
’u we introduce two nodes in the segments containing
Cllmp) +2rp - p and ¢ respectively, and also an arc to connect

them. The featuré, has no role in this box (i.e.,

(a) separable and connected(b) separable but disconnectegt) separable but disconnected h ¢ ¢(B)) See Figureﬁ(b)_

Figure 5.  ¢(B) is separable: (a2 N D(B) is connected. (b,c) o It Alp) = Ag) .:.h’ the.TeStfa"S' Cl:_)ﬂSIdGT Fhe

QN D(B) is disconnected. segment containing: this segment is split into
two subsegments by; similarly, ¢ introduces two
subsegments. We check the subsegments and any

€21. Boxes with two features. Let us first process original segments of3 lying to one side ofpg,
the boxesB with only two features, say andg. to see if any is bichromatic (whege ¢ have label

» Discard B if ¢(B) is inseparable or({(¢(B) < r h). If so, we introduce nodes as usual. This will
andD(B)N<Q is a connected set). See Figd@). introduce either no node or two nodgs, ¢;. We

o Suppos&’((B) < r andD(B)N is disconnected connectpy, ¢;. Similarly, we may introduce no
(see Figures(b) and (c)). Intersect the bisector of nodes or two nodeg., ¢g> on the other side ofyq.
f, g with the boundary of3: if there are two inter- Figure6(c) illustrates the case where we introduced
section points (this happens only in Figusgb)), four nodes in this way.
introduce two nodes and connect them with a « If A(p) = f, A(¢) = h, the TespassesThis means
straightline segment as arc. we have confirmed the presence of a \Voronoi
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vertex insideB. We introduce a node in interior
of B to represent the Voronoi vertex. There are
now two possibilities:

(1) B has three bichromatic segments, representing
the three Voronoi curves generated iyg, h
in pairs:(f,9), (g,h), (f, h). We introduce three
nodes in the usual way, and join each of them
to thev. See Figures(d).

(2) B has two bichromatic segments. These are
necessarily labeled by and g. Moreover, one (@) using the originat’; filter (b) using the newC; filter
of them contains the poing. We introduce a
node in the segment containipgand two nodes  Figure 7. The Voronoi complex of line segments. Each lineresy
q1,q2 on either side of the segment containing consists of two half-edges. (a) Original with 11,932 boxég,New
q. See Figures(d). with 169 boxes.

The correctness of our algorithm comes from the
following properties. LetG = (N, A) be the PSLG
constructed above. The nodeshhare calledvia nodes
if they lie in the interior of a segment, and they are
called vertex nodesif in the interior of a box. A “purely numerical”. It means that all our predicates can
maximal path in the graphG = (N, A) refers to a be reduced to comparisons of the form< y (or z < y)

path in G whose endpoints have degrees different tharvherez, y are computed quantities. Typically, y are
2. clearances or separations between features. But dis-

_ tances are irrational functions (involving square-roots)
LEMMA 5. (a) Each via node has degreeand each  f the input parameters. For exposition, we write them

vertex node has degree o _ in exact terms. But we do not (should not) compute
(b) Each Voronoi vertex ifVor(§2) is isolated in some  hem exactly. One should think of all these quantities
box that passes the Voronoi Vertex Test. ~z,y as intervals. We only require the widths of these
(c) Each Voronoi curve: in Vor((2) is associated With  jntervals to approach asr(B) — 0. An consequence
a maximal pathc. Moreover, there is an isotopy. :  of this interpretation is that < y” is a one-sided test;

2 Z whi i . .
[0,1] — R* from ¢ to ¢ which respects the vertices of fajjre of the test does not imply:“< 3”. Our current
boxes.!. also respect the sides of non-special boxes. jmplementation is based on naive machine arithmetic,
THEOREM 6. (Correctness) Assuming) is non- and suffices for our demos. We plan to use the number
degenerate, our algorithm halts and the output graphtyPes ofCore Li brary [3€] that can provide such

G = (N, A) is an approximation to the Voronoi complex interval functionalities. The key difference between soft
Vor(Q). predicates and usual exact predicates is termination is

based on non-degeneracy (or cut-offs), not zero-bounds.
923. Remarks. Although the basic primitives are
simple, the correctness arguments are intricate and will |n our Construction Phase, we prescribe certain oper-
appear in the full paper (and our webpages). An inter-ations by intersecting pairs of lines. This could be done
esting remark is that our algorithm is almost exclusivelyexactly if we are willing to use rational arithmetic. But
relying on local isotopy (i.e., the arc connections within even this should be avoided as we wish to use dyadic

each subdivision box is iSOtOpiC to the actual VoronOinumberS (B|gF|oats) 0n|y_ A Correctimp|ementation can
curves in the bOX). A mild exception is the case of eas"y rep|ace these by approximations_

special boxes; non-local isotopy was first exploited by

Plantinga-Vegter4 ], [21]. q25. Filters. The performance of exact numerical
VI. Implementation and the Role of Filters ~ 29°rithms depends critically on the design of effica-
cious filters. This theme is well-known from the Exact
We have a preliminanC++ implementation of our Geometric Computation3f]. In our setting, filters are
new algorithm, freely available in our open-source Coreaimed at preventing unnecessary subdivision. We pro-
Library [39]. Our input files and test results are archived vide two examples here. To measure the effectiveness of
there. The full paper will include experimental compar- the filters, we count number of subdivision boxes. Both
isons with known exact algorithms. examples show two orders of magnitude improvements.
924. What is a Purely Numerical Algorithm? It is (a) The above definition of the predicatg, (B) is
important to understand the claim that our algorithm issufficient for correctness. But we can redefifig( B)
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as: We have also applied our viewpoint to the problem
of motion planning 3], [35], isotopic approximation of
. curves P1] and even root isolation?[F]. The resolution-
{ ¢(B) is an inseparable setr bounded view point has been around for a long time and

Cl(imp) < rp implies

#(B) = {e1, e} where eacl; is an edge permeates many subjects. For instance, convergence is
_ the central to numerical computing. But it has made
The extra filter condition, whereé(B) = {ei,e2} is  few in-roads into Computational Geometry so far. We
illustrated in Figure5(a,b,c). The advantages of using believe that exciting new and practical algorithms will
this extra filter is seen in Figure 7(a,b). emerge when the breakthrough comes.

(b) As another example, we show the effects of turningACKnowledgment

on the zone filterZ(f) and the oriented zone filter  yap's work is supported in part by NSF Grant CCF-

Z*(f). The former filter says that i3 N Z(f) = 0 0917093. Lien’s work is supported in part by NSF Grant
then f ¢ ¢(B). The latter is similar, except that we |;5.096053.

use Z*(f) instead of Z(f). We can see the dramatic
reduction in the size of the subdivision for a relatively References
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